Phosphorylation of CHOP (C/EBP Homologous Protein) by the AMP-Activated Protein Kinase Alpha 1 in Macrophages Promotes CHOP Degradation and Reduces Injury-Induced Neointimal Disruption In Vivo.

نویسندگان

  • Xiaoyan Dai
  • Ye Ding
  • Zhaoyu Liu
  • Wencheng Zhang
  • Ming-Hui Zou
چکیده

RATIONALE Elevated levels of CHOP (C/EBP homologous protein), a member of the C/EBP transcription factor family, in advanced atherosclerotic plaques is reported to be associated with atherosclerotic plaque rupture in humans. However, the molecular mechanism by which CHOP accumulation occurs is poorly defined. OBJECTIVE The aim of this study was to investigate if (1) macrophage AMPK (AMP-activated protein kinase) regulates cellular CHOP accumulation and (2) whole-body Ampk deletion leads to neointimal disruption. METHODS AND RESULTS In isolated or cultured macrophages, Ampkα1 deletion markedly increased apoptosis and CHOP, whereas pharmacological activation of AMPK dramatically reduced CHOP protein level via promoting CHOP degradation by proteasome. In addition, cotransfection of Chop-specific siRNA, but not control siRNA, markedly reduced apoptosis in macrophages transfected with Ampkα1-specific siRNA. Mechanistically, AMPKα1 was found to coimmunoprecipitate with CHOP and phosphorylate CHOP at serine 30. Furthermore, serine 30 phosphorylation of CHOP triggered its ubiquitination and proteasomal degradation. In a mouse model of plaque stability, deletion of Ampkα1 but not Ampkα2 promoted injury-induced neointimal disruption. This was paralleled by increased CHOP expression and apoptosis in vivo. Finally, transfection of Chop-specific siRNA but not control siRNA reduced both CHOP level and injury-induced neointimal disruption in vivo. CONCLUSIONS Our results indicate that AMPKα1 mediates CHOP ubiquitination and proteasomal degradation in macrophages by promoting the phosphorylation of CHOP at serine 30. We conclude that AMPKα1 might be a valid therapeutic target in preventing atherosclerotic vulnerable plaque formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat

Objective(s): Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measur...

متن کامل

Involvement of endoplasmic stress protein C/EBP homologous protein in arteriosclerosis acceleration with augmented biological stress responses.

BACKGROUND The processes of arteriosclerosis, including atherosclerosis and vascular remodeling, are affected by interactions among numerous biological pathways such as responses to inflammation, oxidative stress, and endoplasmic reticulum stress. C/EBP homologous protein (CHOP), which is well known to induce cellular apoptosis in response to severe endoplasmic reticulum stress, is reportedly u...

متن کامل

Sigmar1 regulates endoplasmic reticulum stress-induced C/EBP-homologous protein expression in cardiomyocytes

C/EBP-homologous protein (CHOP) is a ubiquitously expressed stress-inducible transcription factor robustly induced by maladaptive endoplasmic reticulum (ER) stresses in a wide variety of cells. Here, we examined a novel function of Sigma 1 receptor (Sigmar1) in regulating CHOP expression under ER stress in cardiomyocytes. We also defined Sigmar1-dependent activation of the adaptive ER-stress pa...

متن کامل

Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor

Macrophage death in advanced atherosclerosis promotes necrosis and plaque destabilization. A likely cause of macrophage death is accumulation of free cholesterol (FC) in the ER, leading to activation of the unfolded protein response (UPR) and C/EBP homologous protein (CHOP)-induced apoptosis. Here we show that p38 MAPK signaling is necessary for CHOP induction and apoptosis. Additionally, two o...

متن کامل

Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage

Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 119 10  شماره 

صفحات  -

تاریخ انتشار 2016